
Abstract. A variational method for solving the time-
independent single-particle Dirac equation in the Cou-
lomb ®eld of two nuclei is described. A minimax
variational principle and basis functions that have the
proper analytic behavior, i.e. behave like rc; c non-
integer, in the neighborhood of a nucleus, are used. A
momentum space integration scheme for computing the
necessary two-center integrals is described. Results are
given for a standard test problem on two nuclei with
Z � 90 with an internuclear separation of 2:0=Z. The
results con®rm those of a previous calculation [F.A.
Parpia and A.K. Mohanty, Chem Phys Lett 238: 209
(1995)].
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1 Introduction

In this article a number of aspects of the problem of
solving the time-independent single-particle Dirac equa-
tion in the Coulomb ®eld of two nuclei are discussed.
This problem is of current interest in part because of the
importance of relativistic e�ects in the chemistry of
heavy metals. Essentially all calculations of such e�ects
have used atomic orbital expansions in terms of
Gaussian orbitals. Although these may be one of the
few reasonable alternatives for the calculation of the
required multicenter integrals, their utility is limited
because of the di�culty of adequately representing the
singular behavior of the wave function at the nucleus.
The argument is frequently made that the nucleus is not
a point charge, the nuclear potential is ®nite at the
nucleus and that Gaussian orbitals are appropriate
because of this. This argument seems questionable in

view of the great di�erence of length scales between the
nucleus and even the inner electron orbitals. In any
event, a large number of Gaussians are required to give
an adequate description of the wave function near the
nuclei.

It is well known [1] that the variational method can-
not be applied directly to the Dirac equation, since no
minimum of the expectation value of the Dirac Hamil-
tonian exists. Because of the presence of the negative
energy states, the Dirac Hamiltonian is unbounded from
below, and the energy expectation value can collapse
into the negative energy continuum. Many approaches
have been proposed to deal with this problem; most
invoke some form of the principle of ``kinetic balance'',
which imposes constraints of one form or another on the
variational trial solution. This is discussed in detail be-
low. However, two comments can be made. One is that
to our knowledge none of these approaches has been
demonstrated to give a rigorous upper bound to the
energies. The second is that even if a method gives
the correct energy, there is no guarantee of validity for
the wave function. Indeed, Goldman [2] has given a
simple example in which the correct 1s1=2 energy is given
for the Coulomb problem for an essentially arbitrary
wave function.

It has been shown [3] that the bound state problem
for the Dirac equation can be formulated as a minimax
problem, and this approach has been applied in a pre-
liminary calculation [4]. An example considered in that
article was of two nuclei of charge Z � 90 with a small
separation of 2:0=Z bohr. The variational calculation
was made using a basis of Slater-type orbitals. It was
found that this basis seems to be inadequate to describe
properly the known non-analytic behavior of the Dirac
wave functions in the neighborhood of the nuclei, since
the energy showed slow convergence with the addition of
s1=2 orbitals in the large component basis and the cor-
responding addition of p1=2 orbitals in the small com-
ponent basis. It was also noted that the calculation of
the 1s1=2 energy of the corresponding hydrogen-like
ion using the same basis was in error by about 25 a.u.
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ÿ9504:7567 a.u., obtained by using an extremely large
basis of Gaussian orbitals, has been obtained by Parpia
and Mohanty [5]. This paper will subsequently be re-
ferred to as PM. There has been some concern expressed
(P. PyykkoÈ , personal communication) at the disagree-
ment of this result with that given in Ref. [4] and that of
Sundholm of ÿ9461:9833 a.u. [6]. The results reported
here are in essential agreement with those of PM.

In this article basis functions that have the proper
analytic behavior, i.e. behave like rc; c non-integer, in the
neighborhood of a nucleus are used. It has been em-
phasized by Morgan [7] that the use of a basis that can
emulate the singularity structure of the true wave func-
tion substantially improves the convergence properties
of variational calculations. A momentum space inte-
gration scheme for computing the necessary two-center
integrals is also described.

Although the primary focus of this work is in the
chemistry of heavy atoms, it may also be applicable to
the theory of heavy ion collisions. Although the latter
problem leads to the time-dependent Dirac equation, it
may be useful to be able to solve the time-independent
equation e�ciently at a range of values of the internu-
clear separation in solving the scattering problem in the
adiabatic approximation.

2 Theory

The time-independent Dirac equation considered here is

V �r�g�r� � cr � pf �r� � Eg�r�
cr � pg�r� � �V �r� ÿ 2c2�f �r� � Ef �r� : �1�
Here g�r� and f �r� are the so-called large and small
components of the wave function and are each two-
component spinors. The units are chosen so that
e � m � �h � 1 and the energy is taken relative to c2,
the electron rest energy. The potential considered here is
that produced by nuclei of charge Z1 and Z2 centered at
a1 and a2:

V �r� � ÿ Z1
jrÿ a1j ÿ

Z2
jrÿ a2j : �2�

The minimax formulation of the Dirac equation is [1]

E � min
g 6� 0

max
f
hHDi

� �
; �3�

where

hHDi

� hgjV �r�jgi � 2c<hf jr � pjgi � hf jV �r� ÿ 2c2jf i
hgjgi � hf jf i : �4�

(It was not noted in [1] that g must belong to a space of
dimension > 0.) If a constraint hgjgi � hf jf i � 1 is
introduced with a Lagrange multiplier the minimax
condition can be formulated in terms of a Lagrangian

L � hgjV �r� ÿ kjgi � 2c<hf jr � pjgi
� hf jV �r� ÿ 2c2 ÿ kjf i : �5�

For a given g, the second of the Dirac equations is
satis®ed by the f that maximizes hHDi. The g that
minimizes hHDi, with f a functional of g, then satis®es
the ®rst of the Dirac equations.

The minimax principle can be applied as well to
compute excited states; the principle is applied, however,
to the eigenvalue of kN�k of a matrix diagonalization
problem in which the Dirac Hamiltonian is diagonalized
in a basis of M large component functions and N small
component functions. This result is an extension of the
Hylleraas-Undheim theorem.

More rigorous mathematical arguments than that
given in [1] have recently been constructed [8, 9]. These
articles also give prescriptions for excited state eigen-
values that are generalizations of Rayleigh's principle for
excited states.

A standard approximate method for solving varia-
tional problems of the form of Eq. (3) is to expand the
functions g�r� and f �r� in terms of some bases of stan-
dard functions given analytically. This leads to a matrix
eigenvalue problem of dimension M � N , where M and N
are the number of functions in the large and small basis
sets, respectively. Di�erent approaches to the problem
then center around di�erent choices of these bases.

The basis functions will taken to be of the form

/jm�r� � u�r�Xjm�r̂� ; �6�
where

Xjm�r̂� �
X

l�ml�m

D 1
2

llml

���jmEYlml�r̂�vl

is a spinor wave function in which spin 1
2 is coupled to

orbital angular momentum l to give a total angular
momentum j. The label j � j� 1

2 for j � lÿ 1
2 and

j � ÿ�j� 1
2� for j � l� 1

2. These functions satisfy

r � r/jm�r� � ru�r�Xÿjm�r̂� ; �7�

r � p/jm�r� � ÿi
d
dr
� j� 1

r

� �
u�r�Xÿjm�r̂� : �8�

Functions of this form will be taken centered on each
nucleus.

In spherical symmetry, the Dirac equation can be
reduced to two radial equations by writing g�r� �
rÿ1u�r�Xjm�r̂�, f �r� � ÿirÿ1v�r�Xÿjm�r̂�. The result is

V �r�u�r� � c ÿ d
dr
� j

r

� �
v�r� � Eu�r�

c
d
dr
� j

r

� �
u�r� � �V �r� ÿ 2c2�v�r� � Ev�r� : �9�

In the case of a Coulomb potential V �r� � ÿZ=r, the
solutions of these equations behave, near the nucleus,
like �arcÿ1, brcÿ1�, where c � �j2 ÿ �Z=c�2�1=2 and b=a �
Z=c�jÿ c�.

Normally, the ratio jv�r�=u�r�j>1. However, in the
Coulomb problem, if j > 0, i.e. j � lÿ 1

2, and r < Z=c2,
the ratio may be large. In this case, the functions u and v
behave like rlÿ1 for small Z and r rather than like rl as
would be expected in the non-relativistic limit. The states
nl have polynomial factors of degree nÿ l� 1 rather
than nÿ l as in the non-relativistic case.
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The usual approach to the problem of variational
collapse is to impose the principle of kinetic balance on
the basis sets. Simply put, this requires that if a function
/�r� occurs in the basis for the large component, the
function r � p/�r� should occur in the small component
basis, or the span of the small component basis. How-
ever, there appear to be di�erent ways of formulating this
principle. In some, the coe�cients of the small compo-
nent basis functions are ®xed by the relation
b=a � Z=c�jÿ c�; in others the coe�cients are to be in-
dependent parameters. In our view, the latter is more
plausible for the following reason. The exact f is given by

f �r� � c�E � Z=r � 2c2�ÿ1r � pg�r� :
The variational problem involves ®nding the f that best
represents the exact f for a given g. It is clear that allowing
the coe�cients to vary gives an upper bound in any case in
which constraining them gives an upper bound.

If jV �r�j>E � 2c2, the principle of kinetic balance
should ensure that the equation for f �r� is satis®ed and
an upper bound is obtained, at least approximately.
However, this inequality is always violated by a Cou-
lomb potential. A further problem that arises with a
Coulomb potential is that the wave functions behave like
rcÿ1 where c < 1, for r! 0. The principle of kinetic
balance can then not be invoked for s states, since the
small component orbitals would behave like rcÿ2 at small
r and would not be normalizable.

A problem arises in the solution of the atomic Cou-
lomb problem with the so-called spurious states that
arise for j > 0 [10, 11] in that if the basis is kinetically
balanced, a spurious eigenvalue of the diagonalization
problem occurs degenerate with the corresponding state
at ÿj, i.e. a 1p, 2d, etc state. This problem is readily
eliminated in the minimax formulation, as has been ex-
tensively discussed by Kolakowska [12], by varying the
non-linear parameters in the large and small component
bases independently. The degeneracy can also be re-
moved by using a small component basis of dimension
higher than the large component basis.

In this article, the basis functions are taken to be of
the form

vnjm�r; a� � rc�nÿ2eÿarXjm�r̂�; n � 1; 2; . . . : �10�
These functions satisfy

r � prc�nÿ2eÿarXjm�r̂� � ÿi ÿa� c� n� jÿ 1

r

� �
rc�nÿ2eÿarXÿjm�r̂� :

3 Overlap integrals

For this work, integrals of the form

I�a� � hFj0m0 �rÿ a�jGjm�r�i ; �11�
where F and G are of the form

Fj0m0 �r� � rs0eÿa0rXj0m0 �r̂�; Gjm�r� � rseÿarXjm�r̂� ; �12�
are required.

The integral can be calculated using the identity, de-
rived by Fourier transform methods,Z

fl0m0 �rÿ a��glm�r�dr

� 8
X
LM

iL�l0ÿl �2l� 1��2l0 � 1��2L� 1�
4p

� �1=2
� �ÿ1�m l l0 L

0 0 0

� �
l0 L l

ÿm0 M m

� �
YLM �â�

�
Z1
0

jL�ka� ~fl0s0 �k�~gls�k�k2 dk �13�

where

~fl0s0 �k� �
Z1
0

rs0�2eÿa0rjl0 �kr�dr;

~gls�k� �
Z1
0

rs�2eÿarjl�kr�dr : �14�

Using standard angular momentum techniques, I�a� can
be expressed, in the particular case that a is on the z-axis,
by

I�a� � 2

p
��l��l0��j��j0��1=2�ÿ1�m�1=2

X
L

iL�l0ÿl�L�

� l0 L l

0 0 0

� �
j0 j L

l l0 1
2

� �
dm; m0

j0 L j

ÿm 0 m

� �

�
Z1
0

jL�ka� ~fl0s0 �k�~gls�k�k2 dk : �15�

For l � 0 it is readily found that

~g0s�k� � C�s� 2�kÿ1Im��aÿ ik�ÿ�s�2�� �16�
and for higher value of l, ~gls�k� can be computed from
the recurrence relation

k~gl�1;s�k� � �l� s� 2�~gl;sÿ1�k� ÿ a~gl;s�k� : �17�
The integrand in the k integration behaves like
kÿS sin�kr ÿ lp=2� for large k values where S � s� s0�
l� l0 � 5 and this slow decrease, together with the
oscillatory behavior, makes accurate evaluation of the
integral di�cult. This di�culty can be avoided by
transforming the integral into the complex plane,
integrating on the intervals �0;K� and �K;K ��1� i�1�.
The ®rst integral can be computed using Gauss-Legend-
re integration, and the second by Gauss-Laguerre
integration. Twenty mesh points were used in each of
the two integrations; it was con®rmed by increasing the
number that this is adequate to give 8-digit accuracy.

4. Results

Minimax points have been found with a search method
in which ®rst and second derivatives of the energy are
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obtained analytically [13]. The gradient vector with
respect to the large and small non-linear parameters,
respectively, will be denoted �u; v�. The Hessian matrix
of second derivatives can be written similarly as

A BT

B C

� �
:

The energy can be expanded in terms of parameter
increments x; y in the large and small parameters
respectively as

dE � uTx� vTy� 1
2x

TAx� yTBx� 1
2y

TCy

� uTx� vTy� 1
2x

TAx� 1
2�y� Cÿ1Bx�TC�y� Cÿ1Bx� :

�18�
If C is negative de®nite, maximizing on y for ®xed x
gives the equation,

y � ÿCÿ1�v� Bx� : �19�
Substituting into Eq. (17) gives

dE � uTx� 1
2x

TAxÿ 1
2�v� Bx�TCÿ1�v� Bx� : �20�

A minimum on x is obtained if

x � �Aÿ BTCÿ1B�ÿ1�ÿu� BTCÿ1v� : �21�
This provides a local minimum provided the matrix
Aÿ BTCÿ1B is positive de®nite.

The search for a minimax using this iteration scheme
converges quadratically in the neighborhood of a solu-
tion. However, except in the lowest dimensional cases,
the structure of the energy surface is very complex, and it
is very di�cult to ®nd a suitable starting point. In par-
ticular, the matrices ÿC and Aÿ BTCÿ1B are not in
general positive de®nite. In these cases, we de®ned a
`positive de®nite inverse' by

Xÿ1pd �
X
ki>0

kÿ1i wiw
T
i

in order to compute the parameter increments. Unfor-
tunately, in many cases, the iterative process converges
to a point at which ÿC and Aÿ BTCÿ1B are not positive
de®nite. In all the variational results given here, the
matrices ÿC and Aÿ BTCÿ1B are positive de®nite. There
may be, in many situations, more than one minimax
solution and in a few cases we have found more than
one. In these cases, there is no way of asserting that one
solution is better than another.

In Table 1 we present results for a number of
minimax calculations for the system Z1 � Z2 � 90 with
an internuclear separation of 2:0=Z using a basis of N
s orbitals, i.e. j � ÿ1�1� for the large (small) compo-
nent orbitals centered at each nucleus. nmax is the
highest degree of the polynomial factor of the basis
functions. In all these calculations, the value of
c � aÿ1 is 137.0359895. The unprimed results are ob-
tained using orbitals with the proper behavior
(c � �j2 ÿ �Z=c�2�1=2) at the origin and the primed re-
sults are obtained with c � jjj. It is seen that more
rapid convergence and greater stability is obtained
when the basis functions have the appropriate behav-
ior at the origin. In this case PM give a result of
ÿ9368:5224 a.u. obtained using a tempered basis of 50
Gaussian orbitals.

Table 2 gives results analogous to those of Table 1
but including p and d orbitals centered at each nucleus.
Again, nmax is the highest power of r in the basis so that
results are given for basis functions going up to qua-
dratic terms in x; y; z (apart from the non-integer rela-
tivistic correction. Two comments concerning the j > 0
basis functions are important. In the non-relativistic
limit, the lowest p1=2 orbital behaves like a constant at
the origin. Therefore nmax � 2 for the lowest dimensional
calculation and is similarly incremented for the larger
calculations. Because of the problem of spurious solu-
tions that can arise when functions with j > 0 are in-
cluded, one more small component basis function is
included; i.e. in the lowest dimensional calculation,
nmax � 3 in the small component p1=2 basis. In two cases,
minimax solutions could not be found for the calcula-
tions with c � jjj.

The results obtained by PM using 50 s and 41 p
Gaussian orbitals is ÿ9499:89 a.u. Using 50 s, 41 p and
32 d Gaussian orbitals the result is ÿ9504:5712 a.u.

It is not feasible to carry out the minimax search
procedure using larger basis sets. Therefore, to obtain
more precise results, we expand the basis sets using ®xed
values a � b � 154:0. This is chosen to give the correct
asymptotic behavior at large r:

a � cÿ1�ÿE�ÿE � 2c2��1=2 :
In these calculations, nmax is the number of s1=2 and p1=2
large orbitals. The number of orbitals decreases by 1
when j increases by 1. As before, the number of small
orbitals is the same as the number of large orbitals if
j < 0 and is 1 larger, if j > 0.

Table 1. Minimax non-linear
parameters and energies (in
a.u.) for the case of s orbitals
centered at each of the nuclei.
Primed values are computed
with c � jjj

nmax a b E a0 b0 E0

1 107.74 103.70 )9342.8816 133.85 114.12 )9330.247
2 142.19 136.32 )9363.8107 131.55 167.88 )9278.578
3 176.62 164.67 )9367.0208 214.58 174.95 )9353.888
4 176.39 141.69 )9366.9352 211.82 248.53 )9333.519
5 144.37 180.90 )9368.0698 216.69 148.54 )9359.783
6 181.54 178.07 )9368.2617 268.00 309.26 )9346.6957
7 226.51 207.57 )9368.5095 283.14 221.36 )9365.3712
8 249.05 241.39 )9368.5177 282.34 190.76 )9365.1192
9 277.20 254.65 )9368.5221 346.16 281.68 )9366.6921
10 274.64 290.00 )9368.5166 342.92 244.22 )9366.5517

354



Table 3 gives results including s and p orbitals up to
nmax � 9. It is seen that these results essentially con®rm
that of PM.

Table 4 gives results including s, p, and d orbitals up
to nmax � 8. It must be noted that in the case nmax � 4
a spurious root (at -15438.0) was obtained despite the
precautions taken against it. In this case we give the
value of the �N � 2�nd eigenvalue. The result given by
PM, adding 32 d orbitals, is ÿ9504:5712 a.u., again es-
sentially in agreement with the present results. Table 5
gives results including up to f orbitals. Again, in the case
nmax � 5, a spurious root occurred. The result given by
PM, adding 23 f orbitals, i.e. ÿ9504:5712 a.u., is again
in agreement with these. Results including up to g or-

bitals are given in Table 6. The result given by PM,
adding 14 g orbitals, i.e. ÿ9504:7562, agrees with the
present result to 6 ®gures. Results essentially the same as
those of PM have also been obtained by Franke [14] by
solving a matrix approximation to the equations iterat-
ively and by DuÈ sterhoÈ ft and Kolb [15] using a ®nite el-
ement numerical method.

5 Discussion

In our opinion, the present results con®rm the values
given by PM to at least 0.1 a.u. and probably 0.01 a.u.
The results are obtained with a far smaller number of
basis functions and show the importance of having the
correct analytic behavior of the orbitals at the nucleus.
The results given in Table 1 indicate the much more
satisfactory convergence when the factor rc is included in
the radial function; the importance of this was already
suggested in [4].

Table 3. Energies obtained using s and p orbitals with various
values of nmax

nmax E

2 )9488.9386
3 )9497.2293
4 )9497.7088
5 )9499.3192
6 )9499.6129
7 )9499.5947
8 )9499.7141
9 )9499.7908

PM )9499.8950

Table 4. Energies obtained using up to d orbitals with various
values of nmax

nmax E

3 )9503.2790
4 )9504.2202a
5 )9504.5126
6 )9504.5627
7 )9504.5338
8 )9504.5440

PM )9504.5712

a (N+2)nd eigenvalue

Table 5. Energies obtained using up to f orbitals with various
values of nmax

nmax E

4 )9504.9805
5 )9504.6595a
6 )9504.7068
7 )9504.7293

PM )9504.7485

a �N � 2�nd eigenvalue

Table 6. Energies obtained using up to g orbitals with various
values of nmax

nmax E

5 )9504.7211
6 )9504.7401
7 )9504.7497

PM )9504.7562

Table 2. Minimax non-linear parameters and energies (in a.u.) obtained including p and d orbitals in the calculation. Primed values are
obtained with c � jjj
j lj nmax a b E a0 b0 E0

)1 s1=2 2 137.90 134.10 132.94 170.21
1 p1=2 2 160.19 203.52 179.82 289.00

)2 p3=2 1 155.95 139.30 )9496.9410 171.78 154.28 ÿ9410:3224
)1 s1=2 3 156.82 147.97 205.43 163.71
1 p1=2 3 221.54 240.05 232.51 320.01

)2 p3=2 2 220.24 200.48 )9498.4119 231.50 210.04 ÿ9479:4060
)1 s1=2 4 155.23 175.00
1 p1=2 4 220.76 242.09

)2 p3=2 3 220.04 210.90 )9498.3076

)1 s1=2 3 151.25 143.34
1 p1=2 2 145.11 274.65

)2 p3=2 2 196.30 179.94
2 d3=2 2 161.49 224.82

)3 d5=2 1 229.20 190.49 )9503.9964
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Although the results con®rm those of PM, the cal-
culations lead to some disturbing observations. The
basis sets used in the calculations with ®xed a and b are
essentially those recommended by the proponents of the
``kinetic balance'' principle. We note that the ®rst entry
in Table 5 is slightly below the apparently true result,
and therefore is seemingly not a true upper bound. The
occurrence of spurious solutions in two cases is much
more troublesome; these should de®nitely not have oc-
curred if the kinetic balance principle is valid.
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